A combinatorial approach to sums of two squares and related problems
نویسنده
چکیده
In this paper we study elementary approaches to classical theorems on representations of primes of the form ax2 + by2, in particular the two squares theorem. While most approaches make use of quadratic residues, we study a route initiated by Liouville, and simplified by Heath-Brown and Zagier.
منابع مشابه
Symmetry in Turán Sums of Squares Polynomials from Flag Algebras
Turán problems in extremal combinatorics concern asymptotic bounds on the edge densities of graphs and hypergraphs that avoid specified subgraphs. The theory of flag algebras proposed by Razborov provides powerful semidefinite programming based methods to find sums of squares that establish edge density inequalities in Turán problems. Working with polynomial analogs of the flag algebra entities...
متن کاملNEW MODELS AND ALGORITHMS FOR SOLUTIONS OF SINGLE-SIGNED FULLY FUZZY LR LINEAR SYSTEMS
We present a model and propose an approach to compute an approximate solution of Fully Fuzzy Linear System $(FFLS)$ of equations in which all the components of the coefficient matrix are either nonnegative or nonpositive. First, in discussing an $FFLS$ with a nonnegative coefficient matrix, we consider an equivalent $FFLS$ by using an appropriate permutation to simplify fuzzy multiplications. T...
متن کاملA Least Squares Approach to Estimating the Average Reservoir Pressure
Least squares method (LSM) is an accurate and rapid method for solving some analytical and numerical problems. This method can be used to estimate the average reservoir pressure in well test analysis. In fact, it may be employed to estimate parameters such as permeability (k) and pore volume (Vp). Regarding this point, buildup, drawdown, late transient test data, modified Muskat method, interfe...
متن کاملOptimal Pareto Parametric Analysis of Two Dimensional Steady-State Heat Conduction Problems by MLPG Method
Numerical solutions obtained by the Meshless Local Petrov-Galerkin (MLPG) method are presented for two dimensional steady-state heat conduction problems. The MLPG method is a truly meshless approach, and neither the nodal connectivity nor the background mesh is required for solving the initial-boundary-value problem. The penalty method is adopted to efficiently enforce the essential boundary co...
متن کاملSuperlinearly convergent exact penalty projected structured Hessian updating schemes for constrained nonlinear least squares: asymptotic analysis
We present a structured algorithm for solving constrained nonlinear least squares problems, and establish its local two-step Q-superlinear convergence. The approach is based on an adaptive structured scheme due to Mahdavi-Amiri and Bartels of the exact penalty method of Coleman and Conn for nonlinearly constrained optimization problems. The structured adaptation also makes use of the ideas of N...
متن کامل